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Outline

1. Known-key attacks on block ciphers

2. Our attacks on 11-round Feistel cipher

3. Our attacks on Its hash functions
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Secret-key security

• A key is chosen random and kept secret

• Given oracle access, an adversary tries 
to recover the key or distinguish from 
random permutation
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Known-key security

• A key is chosen random and revealed

• An adversary tries to find “something 
different” from random permutation

• No oracle access needed
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• Introduced by Knudsen and Rijmen [AC2007]

7R AES, 7R Feistel
• Mendel et al. [SAC2009]                   7R AES 
• Minier et al. [Africacrypt 2009]         Rijndael
• Gilbert and Peyrin [FSE2010]          8R AES
• Bouillaguet et al. [SAC2010]            Generalized Feistel
• Sasaki [IWSEC 2010]                            Rijndael
• Nikolic et al. [ICISC 2010]                  several ciphers
• Minier et al. [FSE 2011] Generalized Feistel

. . . Many attacks published

Previous work
of known-key attacks

’
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Formalization of known-key attacks

• Raised as an open problem by Knudsen 
and Rijmen

• Previous work only partially succeeded 
[Minier et al. 2009]

• Seems quite difficult to formalize the 
notion of known-key attacks in its 
generality
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“Sufficient condition”

• Known-key attacks may be meaningful 
when used in hashing modes

• Meaningful if meaningful in a hash 
setting (collision, preimage, etc.)

Davis-Meyer, Hirose’s DBL, etc.

E H
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Our results

• Previous best attack: 7R Feistel

[Knudsen and Rijmen, AC2007]

• Our new attack: 11R Feistel

• Difference in round functions

– AC2007 assumed key xor followed by an 
arbitrary function

– We assume key xor followed by an SP 
function
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SP round function
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n: half the block size
c: byte size

MDS: Maximum distance separable

Assume “good” S-boxes
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Attack strategy

• Find a message pair having a specific 
truncated difference such that the 
corresponding ciphertext pair also has 
the same truncated difference

• We can find such a pair for the Feistel
network faster than we do for a random 
permutation
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Attack parameters

• Block size N = 128 bit with byte size c = 4 or 8 bit S-
boxes

• Block size N = 64 bit with byte size c = 4 bit S-boxes

• We use the truncated difference (P(1), F)

Cipher

(P(1), F)

(P(1), F)

P(1): 2^c patterns
F: 2^n patterns

n = N/2
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Attack techniques

• Based on the rebound attack developed 
by Mendel et al. [FSE 2009]
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Application to hashing modes

• Can be applied to Matyas-Meyer-Oseas (MMO)
and Miyaguchi-Preneel modes

• The key value corresponds to chaining 
variable or to IV
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Half-collision attacks
• Direct translation of 11R distinguisher yields partial 
collision of its MMO / Miyaguchi-Preneel hash function

• Rebound attack can generate many (e.g. 2^c) pairs, 
yielding half-collision in the left half (faster than the 
naïve birthday attack)

Cipher

(P(1), F)

(P(1), F)
⊕
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Full-collision attacks

• Reduce # of rounds in the outbound phase from 3 to 
2 by removing the 1st and the 11th rounds (so 2 + 5 + 
2 = 9R in total)

• The truncated difference is now (1,P(1)), making full-
collision attack possible (faster than the birthday 
bound)
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Concluding remarks

• The case of 64bit block with 8-bit S-
boxes can also be analyzed (but # of 
rounds has to be reduced)

• Restrictions of “good” S-boxes and of 
MDS matrix are not quite mandatory for 
the attack to work

• Future work: application to actual 
ciphers
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Thank you.


